Oligonucleotide Mapping via LC-UV-MS/MS to Enable Comprehensive Primary Structure Characterization of mRNA Drug Substance

Brian C. Gau¹, Andrew W. Dawdy¹, Leah Hanliu Wang¹, Bradley Bare¹, Carlos H. Castaneda¹, Olga V. Friese¹, Matthew S. Thompson², Thomas F. Lerch¹, David J. Cirelli², and Jason C. Rouse²

¹Biotherapeutics Pharm. Sci., Pfizer Inc, St Louis, MO, USA and ²Andover, MA, USA

September 2023

Outline

- Overview of the Comirnaty mRNA Vaccine Against SARS-CoV-2
- Oligonucleotide Mapping Considerations
- Oligonucleotide Mapping of BNT162b2 mRNA Primary Structure by LC-UV-MS/MS
 - Link:

Gau, B.C. et al. Oligonucleotide mapping via mass spectrometry to enable comprehensive primary structure characterization of an mRNA vaccine against SARS-CoV-2. *Scientific Reports* **13**, 9038 (2023) https://rdcu.be/di05D

- Utility of Oligonucleotide Mapping
- Ensuring Optimum Chromatographic Separation
- Ensuring Optimum MS/MS
- Data Analysis Workshop

Overview of the Comirnaty mRNA Vaccine Against SARS-CoV-2

Basic Design of Pfizer/BioNTech mRNA Vaccine(s) against SARS-CoV-2

- Train patient's immune system to recognize the virus, specifically the spike protein on the surface
- Give the "code" or "recipe" of the spike protein to your cells
- The original mRNA construct in the Comirnaty Vaccine is "BNT162b2"

Lewis, L.M., et al Journal of Pharmaceutical Sciences 112, 640-647 (2023)

BNT162b2 mRNA is Capped at its 5' End

- The 5' end of endogenous mRNA is covalently modified with a 5'-5' linked N⁷-methyl guanosine (m⁷G) cap
 - Protects 5' end of the mRNA from exonucleolytic attack and promotes translation¹
 - Multiple cap-specific enzymes involved
- In vitro transcription of the mRNA vaccine from linearized plasmid DNA mimics this by reaction control of four bases and a special 5' cap

BNT162b2 mRNA has a Poly(A) Tail at Its 3' End

- The poly(A) tail is important for nuclear export, RNA stability and translational efficiency¹
- The DNA plasmid encodes for the poly(A) tail
- Polymerase transcriptional slippage gives rise to multiple poly(A) species²
 - Usually a series of species, each different from the previous smaller by the incorporation of a single adenosine nucleotide
 - Bias towards more A than coded for by DNA

Oligonucleotide Mapping of mRNA Primary Structure by LC-UV-MS/MS has Supported Regulatory Filings And Launches in 180+ Markets Globally

Oligonucleotide Mapping Provides

- Direct Primary Structure Understanding
 - 5' terminus cap heterogeneity
 - 3' terminus poly(A) tail heterogeneity
 - Full-length mRNA

Orthogonal Identity

- BNT162b2 (Original)
- Variant constructs (Delta, Omicron)

Batch Comparability Assessment

- Process changes
- Scale-up
- Scale-out

Supporting Regulatory Leaflets for Numerous EUAs/MAAs/BLAs

- 3.2.S.3.1 (Elucidation of Structure)
- 3.2.S.2.6 (Comparability)

Fully Annotated Oligonucleotide Map Generated by a Robust Workflow

Oligonucleotide Mapping Considerations

BNT162b2 mRNA has 4283 Residues, From 4 Nucleotide Building Blocks

- Oligonucleotide mapping is highly analogous to peptide mapping
 - RNase T_1 is the Trypsin analog: it cuts after every G
 - The RNase T₁ digest product oligonucleotides are analyzed by LC-UV-MS/MS, just as Trypsin digest product peptides are
- But, recognize the inherent chemical differences between protein and RNA
 - 4 nucleotides, not 20 amino acids
 - Much longer (4000 nt) than typical protein (200 AA)
- Whereas it is highly unlikely a peptide will have any sequence isomers in a protein's trypsin digest, it is assured that many oligonucleotides will have sequence isomers in the ensemble of a construct's RNase T₁ digestion products

"V" = N1-methylpseudouridine

Observed Mass	bserved Mass Sequence		ЕПО	Length	Theoretical Mass	Error (ppm)
4493.6454	VCCAACAVCAVCAG	345	358	14	4493.6499	-1.0
4493.6454	VCVACVACCACAAG	481	494	14	4493.6499	-1.0

Is the UV peak VCCAACAVCAVCAG, VCVACVACCACAAG, or a mixture of peak isomers? **MS/MS fragmentation sequencing is key for determining the identity of sequence isoforms**

Sequence Isomers Present a Significant Analytical Challenge

 To illustrate: compare the set of 302 theoretical RNaseT₁ digestion products from BNT162b2 to the 302 theoretical digestion products from a construct having the reverse sequence (not the complement):

BNT162b2 mRNA has 4283 Residues, From 4 Nucleotide Building Blocks

- RNase T₁ is the Trypsin analog: it cuts after every G
- In an RNase T₁ digest,
 - There will be many digest oligonucleotides that are sequence isomers sharing the same composition (previous slide)
 - Many shorter digest oligonucleotides map to more than one place (locus) in the sequence
 - For example, **vvcg** has 6 loci
 - These are sometimes referred to as "repeat sequences"
 - The shortest is G (that is preceded by a G). There are 214 such loci
- Annotation and naming convention:
 - "R#" represents oligonucleotide RNase T₁ digestion products indexed from the 5' to 3' end
 - In chromatogram annotation, "R#*" denotes a sequence-repeat oligonucleotide, where the single peak assignment represents all identical oligonucleotides in the sequence

Oligonucleotide Mapping of BNT162b2 mRNA Primary Structure by LC-UV-MS/MS

Oligonucleotide Mapping Sample Handling & Acquisition

- Sample Handling
 - 50 μg + 2500 U RNase T₁ + buffer/EDTA to a final vol of 35 μL, 50 mM Tris pH 7.5, 20 mM EDTA, in glass totalrecovery autosampler vial
 - Digest progressed 1 h at 37 °C, then stored at -80 °C until analysis
- IP-RP-UHPLC-UV
 - System: Agilent 1290 BioInert
 - Column: Waters ACQUITY PREMIER Oligonucleotide C18 Column, 130Å, 1.7 μm, 2.1 x 150 mm
 - Mobile phase A: 0.1% TEA (triethylamine), 1% HFIP (hexafluoroisopropanol), Water
 - Mobile phase B: 0.1% TEA, 1% HFIP, 50% Methanol
 - 5 h method gradient: 1% \rightarrow 17% B, 195 min, then 17% \rightarrow 38% B, 70 min, 0.2 mL/min, 60 °C
 - PDA detector; monitor 260 nm, 4 nm bandwidth with reference at 360 nm, 20 nm bandwidth
- HRMS/MS
 - System: Orbitrap Thermo Eclipse
 - Source: negative mode, 2700 V, 40 Sheath Gas, 10 Aux Gas, 320 °C Ion Transfer Tube, 300 °C Vaporizer
 - HRMS, main segment: 120000 RP (at 400 m/z), 50 ms max inj time, 100% AGC target, 1 microscan, 450 2000 m/z, 0-240 min
 - HRMS, poly(A) segment: 120000 RP, 300 ms max inj time, 250% AGC target, 5 microscans, 700 2000 m/z, >240 min
 - MS/MS, main segment: HCD fragmentation, 17/21/25 stepped collision energy (%), 30000 RP Orbitrap fragment scan, 2 min cycle time, DDA precursor selection, dynamic exclusion 6 sec, 300 ms max inj time, 250% AGC target, 1
 microscan

Comprehensive, Semi-Automated, High-Fidelity Data Analysis Workflow

Semi-Automated Data Analysis Workflow

1. Automated Search

- Mass table by retention time
- Identifications (72% Coverage)

2. Automated LC-UV Annotation

- Match Peak IDs to Chromatogram
- Reformatted Mass Table

3. Supplement LC-UV Annotation

• Data mining & MS/MS Analysis Tools

4. Supplement Missing Coverage

• Data mining & MS/MS Analysis Tools

5. Add 5' & 3' Termini Characterization

Final Reportables

- Fully-Annotated Chromatographic Map
- Sequence Coverage Calculation & Map
- Curated Mass Table
- 5' & 3' terminus characterization

Verification by Decoy Searching

Decoy search excluding BNT162b2 mRNA construct

Decoy search including BNT162b2 mRNA construct

Fully Annotated Oligonucleotide Map Generated by a Robust Workflow

100% BNT162b2 Sequence Coverage Observed

Approximately half of consensus RNase T₁ cleavages map to one locus and half contain multiple loci

232 oligonucleotides

(48.8% Coverage)

One Locus

70 oligonucleotides

46 oligonucleotides

14 oligonucleotides

Missed-Cleavages & Non-Consensus Cleavages

AGAAVAAACVAGVAVVCVVCVG<mark>G</mark>VCCCCCACAGACVCAGAGAGAACCCGCCACCAVG<mark>VVCGVGVVCCVGGVGCVGCVGCVGGVG</mark>VCCAG<mark>CCAGVGVGVGAACCVG</mark>ACCACCAGAACAC AG<mark>CVGCCVCCAG</mark>CCVACACCAACAGCVVVACCAGAGGCGVGVACVACCCCGACAAGGVGVVCAGAVCCAGCGVGCVGCACCCAGGACCVGVVCCVGCCVVCVVCAGCAACGVGA CCVGGVVCCACGCCAVCCACGVGVCCGGCACCAAVGGCACCAAGAGAVVCGACAACCCCGVGCVGCCCVVCAACG<mark>ACGGGGVG</mark>VACVVVGCCAGCACCGAGAAGVCCAACAVCAVCAGAG GCVGGAVCVVCGGCACCACACVGGACAGCAGCACGAGCCCAGAGCCVGCVGAVCGVGAACAACGCCACCAACGVGGVCAVCAAAGVGVGCGAGVVCCAGVVCVGCAACGACCCCVVCCVGGGCG VCVACVACCACAAGAACAACAAGAGCVGGAVGGAAAGCGAG<mark>VVCCGGGVG</mark>VACAG<mark>CAGCG</mark>CCAACAACVGCACCVVCGAGVACGVCCCAGCCVVVCCVGAVGGACCVGGAAGGCAAGC VGGAACCCCVGGVGGAVCVGCCCAVCGGCAVCAACAVCACCCCGGVVVCAGACACVGCVGGCCCVGCACAGAAGCVACCVGACACCVGGCGAVAGCAGCGGAVGGACAGCVGGVGCCCG VGAAGVCCVVCACCGVGGAAAAGGGCAVCVACCAGACCAGCAACVVCCG<mark>GGVGCAG</mark>CCCACCGAAVCCAVCGVGCGCCCAAVAVCACCAAVCVGVGCCCCVVCGGCGAGGVGVVCA ACAAGCVGCCCGACGACVVCACCGGCVGVGVGVGVCCGGAACAGCAGCAACAACCVGGACGCCGGCGGCAACVACCAAVVACCVGVACCGGCVGVVCCGGAAGVCCAAVCVGAAGC CCVVCGAGCGGGACAVCVCCACCGAGAVCVAVCAGGCCGGCAGCACCCCVVGVAACGGCGVGGAAGGCVVCAACVGCVACVVCCCACVGCAGVCCVACGGCVVVCAGCCCACAAAVGGCG VCAACGGCCVGACCGGCACCGGCGVGCVGACAGAGAGCAACAAGAAGVVCCVGCCAVVCCAGCAGVVVGG<mark>CCGGG</mark>AVAVCG<mark>CCG</mark>AVACCACAGACGCCGVVAGAGAVCCCCCAGACACVGG AAAVCCVGGACAVCACCCCVVGCAGCVVCGGCGGGGGVGVCVGVGAVCACCCCVGGCACCAACACCAGCAAVCAGG<mark>VGGCAGVGCVG</mark>VACCAG<mark>GACGVGAACVG</mark>VACCGAAGVGCCCGVGG CCAVVCACGCCGAVCAGCVGACACCVACAVGGCGGGVGVACVCCACCGGCAGCAAVGVGVVVCAGACCAGAGCCGGCVGVCVGAVCGGAGCCGAGCCGVGAACAAVAGCVACGAGVGCGACAVCCCCAVCGGCGCVGG<mark>AAVCVGCGCCAG</mark>CVACCAGACACAGACAAACAGCCCVCGGAGAGCCAGAAGCGVGGCCAGAGCAVCAVVGCCVACACAAVGVCVCVGGGCGCCGAG<mark>A</mark> ACAGCGVGGCCVACVCCCAACAACVCVAVCGCVAVCCCCCACCAACVVCACCAVCAGCGVGACCACAGAGAVCCVGCCCAVGACCAVGACCAAGACCAGCGVGGACVGCACCAVGVACAVCV GCGGCGAVVCCACCGAGVGCVCCAACCVGCVGCVGCAGVACGGCAGCVVCVGCACCCAGCVGAAVAGAGCCCVGACAGGGAVCGCCGVGGAACAGGACAAGAACACCCCAAGAGGVGVVCG VCAACAAAGVGACACVGGCCGACGCCGGCVVCAVCAAGCAGVAVGGCGAVVGVCVGGGCGACAVVGCCGCCAGGGAVCVGAVVVGCGCCCAGAAGVVVAACGGACVGACAGVGCVGCCVC CVCVGCVGACCGAVGAGAVG<mark>AVCGCCCAG</mark>VACACAVCVGCCCVGCVGGCCGGCACAAVCACAAGCGGCVGGACAVVVGGAGCAGGCGCCGCVCVGCAGAVCCCCVVVGCVAVGCAGAVGG CCVACCGGVVCAACGGCAVCGGAGVGACCCAGAAVGVGCVGVACGAGAACCAGAAGCVGAVCGCCAACCAGVVCAACAGCGCCAVCGGCAAGAVCCAGGACAGCCVGAGCAGCACAGCAA GCGCCCVGGGAAAGCVGCAGGACGVGGVCAACCAGAAVGCCCAGGCACVGAACACCCVGGVCAAGCAGCVCVCCAACVVCGGCGCCCAVCAGCVCVGVGCVGAACGAVAVCCVGAGCA GACVGGACCCVCCVGAGGCCGAGGVGCAGAVCGACAGACVGAVCACAG<mark>GCAG</mark>ACVGCAGAGCCVCCAGACAVACGVGACCCAGCAGCVGAVCAGAGCCGCCGAGAVVAGAGCCVCVGCCA AVCVGGCCGCCACCAAGAVG<mark>VCVGAGVGVGVGCVGGGCCAG</mark>AGCAAGAGAGVGGACVVVVGCGGCAAGGGCVACCACCVGAVGAGCVVCCCVCAGVCVGCCCCVCACGGCGVGVGVVVC VGCACGVGACAVAVGVGCCCGCVCAAGAGAAGAAVVVCACCACCGCVCCAGCCAVCVGCCACGGCAAAGCCCACVVVCCVAGAGAAGGCGVGVVCGVGVCCAACGGCACCCAVVGGV VCGVGACAGCGGGAACVVCVACGAGCCCCCAGAVCAVCACCGACCACCGCCACCCVCGVGVCVGGCAACVGCGACGVCGGGCAVVGVGAACAAVACCGVGVACGACCCVCVGCAGC CCGAGCVGGACAGCVVCAAAGAGGAACVGGACAAGVACVVVAAGAACCACACAAGCCCCGACGVG<mark>GACCVGGGCG</mark>AVAVCAG<mark>CGG</mark>AAVCAAVGCCAGCGVCGVGAACAVCCAGAAAGAGA VCGACCGGCVGAACGAGGVGGCCCAAGAAVCVGAACGAGAGCCVGAVCGACCVGCAAGAACVGGGGGAAGVACGAGCAGVACAVCAAGVGGCCCVGG<mark>VACAVCVGGCVGGG</mark>CVVVAVCG<mark>CCG</mark> CAGGVAVGCVCCCACCVCCACCVGCCCCACVCACCACCVCVG<mark>CVAGVVCCAG</mark>ACACCVCCCAAGCACGCAGCAAVGCAGCVCAAAAACGCVVAG<mark>CCVAG</mark>CCACACCCCCACGGGAAACAGC

Utility of Oligonucleotide Mapping

Oligonucleotide Mapping Enables Simultaneous Characterization of the 5' Terminus Without Affinity Purification

- Translationallycompetent mRNA is capped at its 5' end
 - Degree of capping is a CQA
- Three constructs shown
 - Comirnaty "Original" is BNT162b2 mRNA. It encodes the first spike protein with 2 two stabilizing proline mutations
 - "Delta" mRNA encodes the first Delta Covid-19 spike protein variant
 - "Omicron" mrNA encodes the first Omicron Covid-19 spike protein variant
- Majority of 5' terminus is capped

Oligonucleotide Mapping of mRNA Enables Simultaneous Characterization of the 3' Terminus Without Affinity Purification

- Translationally-competent mRNA needs a 3' Poly(A) tail
 - The Comirnaty and variant constructs' 3' Poly(A) tail is designed to be 100 A's split by a short oligonucleotide linker to "A30" (30 A's) and "L70" (70 A's) segments
- Poly(A) tail heterogeneity from transcriptional slippage profiled by LC-UV and LC-MS
- IP-RPUHPLC-UV cannot resolve longer L70 poly(A); HRMS is needed

Oligonucleotide Mapping Enables Assessment of mRNA Batch Comparability

- Base-peak or total-ion chromatograms are not appropriate for overall comparability asssment
 - Background ions (esp. HFIP complexes)
 - Ionization efficiency sensitivities
 - The LC-UV chromatogram provides a reliable fingerprint of mRNA digest
- Oligonucleotide Mapping Demonstrating Comparability of Multiple BNT162b2 mRNA Drug Substance Batches
- Side-by-side analyses are highly robust
- Chromatographic peaks overlay well

Oligonucleotide Mapping Enables Comparison of mRNA for Variant Constructs

- The LC-UV chromatogram serves as an identity fingerprint
- ClustalW sequence analysis:
 - BNT162b2 Delta is 99.6% and BNT162b2 Original
 - BNT162b2 Omicron is 98.6% similar to BNT162b2 Original
- LC-UV is (often) conspicuously discerning in the uniquesequence chromatogram region
- Differences in copies of multi-loci oligonucleotides are also apparent
- This could serve as an alternative identity assay to ddPCR
 Pfizer

Measured XIC Areas of Non-Unique Sequence Isomers Correlate with their Number of Loci in the Full Length mRNA Sequence

Measured UV Areas Across Oligonucleotide Map Correlate with Theoretical UV Areas With Proper Accounting

- Empirical peak areas were determined by
 - ICIS peak detection optimized for detection → Table of UV Peak RTs
 - 2. Each end point was re-calculated as ½ distance between ICIS end points of neighboring peak and current peak
 - 3. Peak area = sum of intensity between end points after background subtraction
- Theoretical peak areas were calculated by
 - 1. Using the Table of UV Peak RTs.
 - 2. Assigning a UV peak's ID to the nearest MS-ID'd oligo; more than one oligo can map to a UV peak
 - 3. Dermining each oligo's theoretical extinction coefficient from its composition and based on NMR-derived extinction coefficients¹ for pdG, pdA, pdC, and N1-methylpseudouridine monophosphate²
 - 4. Summing these values for all oligos mapped to peak, if it is a mixture peak, and factoring the number of loci (bottom graphs)

¹Cavaluzzi, M.J. & Borer, P.N. *Nucleic Acids Res* **32**, e13 (2004) ²Emperically determined at Pfizer

8 10

Observed UV Peak Area (Normalized)

12 14

20 30 40 50 60 70 80 90 100

Observed UV Peak Area (Normalized)

Ensuring Optimum Chromatographic Separation and MS Ionization

Solvents and Additives Must be of the Highest Quality

- Ion-paired reversed phase separation of 1-70 nt oligonucleotides best done with TEA/HFIP/Methanol/Water
 - 0.1% TEA 1% HFIP in both mobile phases
 - Shallow gradient to tease apart mixture peaks
 - Only LC-MS-grade solvents, TEA and HFIP are acceptable
 - MQ-Water with LC-PAK cartridge acceptable; run the system for several min before solvent prep
- The UHPLC should be passified to lessen secondary metal-phosphate interaction
 - 0.85% phosphoric acid, then lots of water/methanol, UHPLC offline from MS
 - "BioInert" classified UHPLC are ideal
- Early application notes suggest 400 mM (4.2%) HFIP, but
 - LC/MS grade HFIP is hard to source; 1% HFIP works
 - pH of solvents will change over time, warrenting a short shelf life—except—HFIP can be in short supply...don't discard!
 - Side-by-side analysis can be done with older solvents; it is only historical comparability that can be jeapordized using old solvents

Peak Splitting

- IP-RPLC elution is directly proportional to the # of nucleotides
 - Ion pairing of triethylammonium to the negatively charged phophodiester backbone
- Samples may not fully equilibrate with the mobile phase in the time of passage from the autosampler to the head of the column
 - This gives rise to peak splitting
 - E.g., the capped R1 peptide
- Solution: spike the sample with TEA and HFIP to give their mobile phase levels

Peak Splitting

- 2nd example
- Smaller injection volume also helps, which predicates working with a more concentrated digest (described on Slide 17)

ACCCCTTCCTC

ACCCUTCUTG
Monoisotopic Mass
3482.4811
Average Mass
3484.1243
Precursor Charge State
- 5
Precursor Monoisotopic m/z
695.4889

Ensuring Optimum MS/MS

Higher-Energy Collisional Dissociation (HCD) Gives All Phosphorodiester Fragmentation Products

McLuckey, S.A., et al *Journal of the American Society for Mass Spectrometry* **3**, 60-70 (1992) Figure: Timar, Z. Handbook of Analysis of Oligonucleotides and Related Products 10.1201/b10714-6. (eds. J.V. Bonilla & G.S. Srivatsa) 167-218 (CRC Press, 2011)

Applying Optimized HCD to Differentiate 2 Sequence Isomers Differing by a Single Exchange in Base Positions

Optimal Fragmentation Enables Differentiation of Highly Similar Sequence Isomers V = N1-methyl pseudouridine

Optimal Fragmentation Enables Differentiation of Highly Similar Sequence Isomers V = N1-methyl pseudouridine

Divergent

691

691

m/z

3' fragment ion

m/z

ی۔ ۲

15

sity (%) 01

798

TAACG³

m/z

808

Internal fragment ion

AACG^{3'}

<u>v</u>

828

818

Shift

741

741

tensity (%) 00 05

10 Lefative

0 -

120

100

80

60

40

с<u>3</u>

342

Key

342

1

2

Same

392 m/z

392

m/z

tri x₁i

с Я

5' fragment ion

442

120

641

120

80

641

%

ម្ល

V2¹⁻

ensity (%) . 8

⁵'VVCAAVG³' [M-4H]⁴⁻

36

(1325.2)¹

 $(662.1)^{2}$

 $(996.1)^{1-}$

 $(497.6)^{2-}$

 $(667.1)^{1-}$

 $(333.0)^{2-}$

(362.1)¹⁻

 $(729.0)^{1}$

 $(424.0)^{1-}$

 $(467.7)^{3-}$

(358.0)3-

 $(747.1)^{1-}$

 $(373.0)^{2}$

 $(442.0)^{1-}$

Α

Α

С

G

4

3

2

(1307.2)¹⁻

 $(653.1)^{2}$

(978.1)¹⁻,

 $(488.6)^{2-}$

 $(649.1)^{1-}$

(344.0)¹⁻

"Ladder Ions" Are Useful Sequencing Ions; Internal Fragment Ions Are Not

1

V = N1-methyl pseudouridine

Observed 3' MS/MS fragments 50 (%) (%) 00 00 00 252 CAAVG 1 V52 CAAVG Relative I 10 **1**0 Ö L 0 4 342 0 + 808 392 m/z 798 818 m/z 641 691 828 741 m/z <mark>אזיי</mark> 53 15 100 120 sity (%) 010 25- VAACG VAACG3 2 60 21-23, 40 342 392 808 818 828 691 798 m/z m/z m/z Key

3' fragment ion

Internal fragment ion

5' fragment ion

⁵'VVCAAVG³' [M-4H]⁴⁻

0	Observed 5' fragments					Observed 3' fragments					
а	b	С	d	#		#	w	X	у	z	
		(319.0) ¹⁻	(337.0) ¹⁻	1	۷	7					
(559.1) ¹⁻	(577.1) ¹⁻	(639.1) ¹⁻	(657.1) ¹⁻	2	۷	6					
(864.2) ¹⁻	(882.2) ¹⁻ , (440.6) ²⁻	(944.1) ¹⁻ , (471.6) ²⁻	(962.1) ¹⁻ , (480.6) ²⁻	3	С	5			(822.1) ²⁻ , (547.7) ³⁻	(813.1) ¹⁻	
(1193.2) ¹⁻ , (596.1) ²⁻	(1211.2) ¹⁻ , (605.1) ²⁻	(1273.2) ¹⁻ , (636.1) ²⁻	(1291.2) ¹⁻ , (645.1) ²⁻	4	Α	4	(709.6) ²⁻ , (472.7) ³⁻		(669.6) ²⁻	(660.6) ²⁻	
(760.6) ²⁻	(769.6) ²⁻	(800.6) ²⁻		5	A	3	(545.1) ²⁻	(536.0) ²⁻	(1011.1) ¹⁻ , (505.1) ²⁻	(993.1) ¹⁻ , (496.1) ²⁻	
(920.6) ²⁻	(619.4) ³⁻	(640.1) ³⁻	(646.1) ³⁻	6	V	2	(762.1) ¹⁻ , (380.5) ²⁻	(744.0) ¹⁻	(682.1), (340.5)	(664.1) ¹⁻	
(728.4) ³⁻	(734.4) ³⁻	(566.1) ⁴⁻		7	G	1	(442.0) ¹⁻	(424.0) ¹⁻	(362.1) ¹⁻	(344.0) ¹⁻	

⁵'VVVAACG³' [M-4H]⁴⁻

Observed 5' fragments						Observed 3' fragments					
а	b	С	d	#		#	w	X	у	z	
		(319.0) ¹⁻	(337.0) ¹⁻	1	V	7					
(559.1) ¹⁻	(577.1) ¹⁻	(639.1) ¹⁻		2	V	6					
(879.1) ¹⁻ , (439.1) ²⁻	(897.2) ¹⁻	(959.1) ¹⁻ , (479.1) ²⁻	(977.1) ¹⁻ , (488.1) ²⁻	3	V	5			(822.1) ²⁻	(813.1) ¹⁻	
(1208.2) ¹⁻ , (603.6) ²⁻	(1226.2) ¹⁻ , (612.6) ²⁻	(1288.2) ¹⁻ , (643.6) ²⁻	(1306.2) ¹⁻ , (652.6) ²⁻	4	A	4	(467.7) ³⁻		(1325.2) ¹⁻ , (662.1) ²⁻	(1307.2) ¹⁻ , (653.1) ²⁻	
(768.1) ²⁻	(777.1) ²⁻	(808.1) ²⁻	(817.1) ²⁻	5	A	3	(358.0) ³⁻		(996.1) ¹⁻ , (497.6) ²⁻	(978.1) ¹⁻ , (488.6) ²⁻	
(920.6) ²⁻	(619.4) ³⁻	(960.6) ²⁻ , (640.1) ³⁻		6	С	2	(747.1) ¹⁻ , (373.0) ²⁻	(729.0) ¹⁻	(667.1) ¹⁻ , (333.0) ²⁻	(649.1) ¹⁻	
(728.4) ³⁻	(734.4) ³⁻	(566.1) ⁴⁻		7	G	1	(442.0) ¹⁻	(424.0) ¹⁻	(362.1) ¹⁻	(344.0) ¹⁻	

37

HCD Collision Energy Optimized at Stepped CE 17, 21, 25

Data Analysis Workshop

Data Analysis Requires MS/MS Hypothesis Checking

- Data analysis is semi-automated ۲
 - 72-90% of sequence ID'd by commercial software (Steps 1 & 2)
 - Goal: 100% sequence coverage and ID all major & minor UV peaks (Steps 3-5)
- Un-ID'd UV features are often mixture peaks

Step 4: Look for missed oligonucleotides

Missing expected oligonucleotide

Master List.xlsx

Collated list of expected and observed oligonucleotides; Sequence coverage calculated

Mixture Peak

MS/MS 1st Match

MS/MS 2nd Match

Mixture Peak

Conclusion

- Oligonucleotide mapping via LC-UV-MS/MS directly interrogates the primary structure of RNA, enabling enhanced structural understanding for mRNA vaccines, genetic therapies, and other RNA molecules
- Oligonucleotide mapping assisted the development and commercialization of the Comirnaty® vaccine against SARS-CoV-2
 - Elucidation of Structure (3.2.S.3.1)
 - Comparability (3.2.S.2.6)
 - Data supported regulatory filings to health authorities in 180+ markets
- Semi-automated workflow generates a reproducible and completely annotated oligonucleotide map
 - Annotated chromatographic map; 15-fold more species than a mAb peptide map
 - Sequence coverage map (up to 100% sequence coverage e.g. BNT162b2)
 - Microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A) tail length
- MS/MS fragmentation was optimized and fidelity of identifications verified by decoy sequence searching
- A step-by-step protocol and VBA-enabled data analysis tools are publicly available

Special Thanks

Andrew Dawdy (Pfizer)

Lead Oligonucleotide Mapping Co-Developer

BioNTech

ThermoFisher Scientific

Protein Metrics

